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Notation

parameter of Foisson process

egtimate of the parameter A

time of operation of the detector on the stochastic process
time to the ith event

a random variable denoting elapsed time between events
(1-1) and 1

& point in time, or an amount of elapsed time depending on
the context

inter-arrival time distribution of input stochastic procese
inter-arrival time distribution of output atochutic process
probability of an event

number of (Poisson) input events to detector in (o,T)
number of output events from detector in (o,T)

expectation of { )

variance of { )

o(s), (q:o(s)) Laplace transform of input (output) inter-arrival

w (k)
o® (03)

é

a(s)
{ )*

distribution
mean of F(t), (Fo(t))
variance of F(t), (Fo(t))

asymptotic quantum efficiency of detector — the ratio of the
asymptotic variance of the estimate of A\ of the ideal
detector to that of the detector model under consideration

a time interval of fixed or variable duration <following an
input event to the detector

the distribution function of <
Laplace transform of ( )
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T a dead time interval followving input event

.}

T a coincidence interval following input event

53’ J=1,2,...,R=1 the states through which an R-fold coincidence
counter must pass before registering an output event

8 the ground state (the most stable state) of & coincidence
counter and the state at t =0

pJ(t »T) the probability density that state is J at time t, and
has been for a time <t and that state R has not occurred
in (o,t) and stateat t =0 is R

nJ(s,t) Laplace transform of pd(t,r)

pd(t) probability that state at time t is J and that state
R has not occurred in (o,t)

u('r) hazard function or conditional probability density of decay
at time T glven surrival to time <

H)‘(T) probability that at least one count is registered in time
interval (o,t)

Hk(t)‘ = H(AT) for photographic detector without reciprocity failure
(this defines absence of reciprocity failure)

Q "fractional utilization factor" - an ambiguous notion
discussed in text

R number of photone required to make a photographic grain
developable
8 the number of photographic grains involved in a photographic

detection problem — 8 1s large but the grains are confined
to a small area

& = E(MT,R) for a simple photographic detector without reciprocity
failure

[ 4 (M, K(R)) #X K(R) & (MI,R) for a composite photographic
detector without reciprocity failure

K(R) the distribution of R in the grains of a given photographi~

material
vi
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E = E(\T,7 2B < & (MI,R) for a photographic material with high
intensity reciprocity failure [AT = constant, A large]

e =6 (L,T,-rc,‘R) < & (M,R) for a photographic materisl with low

intensity reciprocity failure [AT = conetant, X\ small]

T that amount of time in (o,T) during waich detector is not
"dead". '
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COUNTER MODKIS AND APPLICATIONS TO DETECTION PROBLEMS
by
Hans Zweig

INTRODUCTION AND SUMMARY

Work in several aspects of detection theory has been in progress
over the last two decades. Electronic engineers dealing with communi-
cation theory have looked into detection problems which develop from
their studies. Another direction of work in detection theory stems
from the work of physicists in the area of radiation and infrared de-
tection. Detection theory is a term also applied in research probl‘ems
and in other contexts. The concepts and methods of probability and
statistics play important roles in these studies and vary with the
character of the problems. Communication theory is most closely allied
with the branch of statistics dealing with hypothesis testing and the
work of transposing this statistical methodology into the field of com-
munication engineering receives much attention. The second study men-
tioned above 1s concerned more with estimation problems and has not had
such a straightforward development as the first. It has not been clear
which physical and statistical concepts are useful nor how detectors
(1.e., radiation detectors) should be evaluated. Here the major problem
is one of determining how actual detector devices fall short of being
ideal in some sense. In this case more than in communication theory
there 1s a need to simulate mathematically or probabilistically the
working of the detectors in order to understand and evaluate the detec-

tion process.




Rediation is often thought of as a Foisson stream of discrete quante
or events, or a combination of Foisson streams, and radiation detectors
can therefore be thought of as estimators of the parameter or perameters
of these streams. One criterion for Jjudging the performance of radiation
detectors which appears particularly useful is that of "quantum effi-
clency”. This éxpreasion has been used in a variety of wvays. Like most
indices it has grown out of intuitive notions and thus some initial de-
finitions appropriate for the original motivation must be used carefully
in other settings. In Chapter I we give a specific definition which is
uaedvthrou@out the paper.

The history of this expression is interesting. Originally it was
used simply to designate, for a given device, the ratio of the number
of output events, M, to the number of input events, N; a usage which
can be shown to be quite inappropriate in a .la.rge number of situations
(see Chapter IV). The modern version of this concept was first formu-
lated by Rose (11.) and later reintroduced under the designations "detec-
tive quantum efficiency”" by Jones (5,6) and "quantum efficiency" by
Fellgett (4). These writers defined the notion as a ratio of signal-to-
noise-ratios of the "ideal detector" to that of the actual detector.
Another definition was proposed by Zweig, Higgins, and MacAdam (20).

It 18 the ratio, lying between zero and one, of variances of estimfeu
br intensity (e.g. mean of a Poisson process) for an ideal detector
(numerator) and for an actual device (denominator). They also demon-
strated that this definition is equivalent to that used by the earlier
writers vhen it is applied to their analyses. Using this concept of
quantum efficiency, Dvelg (18, 19) examined a simpliffed model of the
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"The purpose of the m-«ant work is to derive the M\- cfficicw
of & variety of detectors for which mathematical models ulrotdy exist

. m to dgvglop nev models for some physical situations which cen be

examined in this light.
The plan of this work is as follows: In Chapter I, (a) a summary

of the models which will be analyzed is given, (b) the applications of

‘these models to specific detection problems is indicated, and (c) the

methods of estimating the parameter of interest and the efficiency of
the estimates is defined. Chapter II contains a summary of known dead
time counter models and evaluates their quantum efficiency. In Chapter
I1I a new class of counters, called coincidence counters, is introduced
and evaluated. Chapter IV contains a discussion of photographic detec-
tors. The dead time and coincidence counter models are used here to
simulate the photographic effect known technically as "reciprocity
failure", and the quantum efficiency of photographic detectors both with
and without reciprocity failure ieg obtained. Chapter V contains two
other applications of the counter models. In this chapter it is shown
how combinations of counters can be used to solve more cbmplex detection

problems. One application involves using dead time and coineidence

" counters in series. This combination is useful in solving & radar
: vrlnging problem when the detection problem consists of Mmtning the

" presence of a pulse pair in s Foisson noise stream. Amﬂmr oaplim:tou

1nvolm using these counters in parallel. In this case the sppl:lcqtion

»~'~ q““r":imqt is that of determining the component parsmeters of a compound
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Various types of ewﬁter models have been introdue&{ and discussed
in the literature of the last twenty years. Type I and Type II counters
heve received the moat extensive treatment, Type I countere are chl.rec-
terized by the fact that a registered event produces a dead time during
vhich no further events can be registered. Type II counters are charac-
terized by the fact that incoming events produce dead time during which
further incoming events cannot be registered, although these events

are capable of prolonging the dead time, that is, paralyzing the counter.
Precise definitions of the counter models will be found in the sections
in which tﬁese models are discussed and evaluated. Modifications of |
'I‘ype I and Type‘ II counters have also been introduced and studied i1 the
literature.

Although the problem of dealing with transformations of Poiesoq
processes goes back at least as far as Bortkiewiez's paper of 1913 (1),
the earliest formulation of what has come to be called the Type II
counter seems to be that of Levert and Scheen in 1943 (7). . The distinc-
tion between Type I and Type II counters was made somevhat earlier (1937)
by Ruark and Brammer (12). ualmuist (8) considered the case of a Type

I counter operating on & process with arbitrary inter-arrival time dis-

tribution F(t), thus generalizing the Foisson 1mx* i‘ntcr-srrivg; time

aistribution F(t) = 1-e” "M rather than the councw ‘mechanism. Teller.

'(5), eonfinins hiuelr to the classical Type I eﬂ w II wd»ll,




greented the use of straightforvard probabilistic arguments and Laplace .

“renatorme to deternine the laplace transform of the inter-srrival time

adstribution of registered events. Takacs (16), using a similar spproach,

generalised tnc counter model so that each incoming event p:rodncu e
dead time 1ntcm1 T with probability p and another event occurring

during this d.ud time, if one is created, will not be regintered althM

it may also produce another dead time with the same probability. The
case P = O produces the Type I counter, while p = 1 produces the
Type II model. In this paper, we shall evaluate the quantum efficiency
of Ty'pe I and Type II counters. These provide interesting comparisons
with the coincidence counter models which will be developed, as well as
with the photographic type of detectors.

Takacs' model is interesting in that it provides a bridge between
the Type I and Type II counters. However, in doing this it also blurs
the‘distinctive features of these counters and it is these that we want
to exploit. Takacs has also dealt with a coincidence problem which is
concerned with the probability of finding several dead time counters
simultaneously locked. This is a different type of coincidence situa-
tion than the one we now present.

The simple coincidence counter model we now introduce 18 intended
to work as follows: An incoming event, say a photon, 1s not directly
recorded by the detector. Instead it changes the state of the detector
say from 8, to 81 The state 81 is maintained for & fixed time

tollavinc the mcidtmo of the photon. If during this tiu 1n{nm1 no

further IM\II tahdl ;:hcc, the detector reverts to lttte 8, and ]
m»ut ewut is mor&d If, however, vhile the dattcm is 1n m
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y : (‘M u, to mm & count). m«. from: umtxm in m qm

mzuntumuuwor.ttm 1, t+20‘t,t+21',t+251,m
"u:u an output: event would be ragistered at tismes t + 2,1 ol at

e+ }t; or in th:ld case five input events have produced two output events.
me R-fold eoincidnnce counter is a generalization of the simple
coincidence counter. Here, incoming events cause changes in the state

of the detector from 81 to 81 Y provided the detector is in state

8, (1 = 0,1,...,R-1) at the time of the arrival of the input event.
For 1 =1,2,..,,R-1 the counter remains in state i for a time Ty
vhich is now taken to be a random variable vith distribution indepen-
.dent of 1. If no further event occurs during time =< 1 following the
last input the counter reverts to state So without registering a count.
Only if state S, 1s reached is a count registered vith the counter
imnediately reverting to So.

The photographic detector is & counting device of an entirely dif-
ferent type but the counter models nevertheless play a part in the ana-
lysis of this type of detector. Basically the photographic detegtor
(the emulsion or photographic plate) consists of an ensemble of many
counters (the individual photographic grains), each of which is able
to register a count only once. The fractional mmber of grains that
develop is then a measure directly related to the averege musber of
photons, incident on each grain d.pring the time of exposure. mm— |
Plest photograghic detector comsists of grains all of the sweé am

| ot apesd, 1.e., ench gredn Tequives B Jhctons o nake 1% mmum‘




which will not be considered, actual photographic detectors consist of
an ensemble of grains of varying speed so that R, the number of photons
reqQuired for registering an output event, is a random variable with

distribution dependent on the particular photographic material.

2. Amlications

There 1is, a photographic effect which can be explained in terms of
the dead time and coincidence counter models introduced above. This

effect is known technically as reciprocity failure and manifests itself

in two different ways. (a) At high intensities A and short exposure
times T the photographic detector registers fewer events for a given

average number of photons per grain AT than when M 1is somevhat

smaller (but AT is fixed). This can be explained by postulating a
dead time Tt following each incident photon so that only those photons
contribute to produce the necessary number R of input events required
for developability of the grain which arrive at least 1 units apart.
(b) Low intensity reciprocity failure denotes the condition in which
the response, for a fixed average input AT, 1is again lowered, this
time when the intensity of radiation M 1s low; that is, the photons
a.rrivir_xg at a grain tend to be spaced far apart. By assuming the type
of mechanism discussed in the case of the coincidence counter, this
type of reciprocity failure can also be explained. The dead time
counter models and coincidence time counter models postulated for photo-
graphic detectors can be identified with the times required for the
photochemical creation of electron hole pairs and the recombination for

such pairs respectively.
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Apart from this application of the counter models, other possibi-
lities suggest themselves. The use of a Type I and a .simrile coincidence
counter in series enables one to construct a device for detecting the
presence of & pulse pair of known spacing embedded in a Poisson noise
stream. This combination of counters suggests itself from range deter-
mination problems in space systems. Another possibility would be to

use these counters in parallel. If the Poisson stream consists of a

variety of particles of different energy E, and the coincidence counter

can be constructed so that particles of energy E < Eo produce only
one transition (So - Sl) whereas particles with energy E > Eo
produce two or more, then the coincidence counter will respond primarily

to the high energy particles. A dead time counter, on the other hand,

will not differentiate between particles of different energy. By varying

the level Eo it is thus possible to estimate the energy distribution
of the Poisson stream. Since energy is directly proportional to fre-
quency what we have thus described‘is the discrete counterpart of a
spectrum analyzer. This analysis may be useful in the study of separa-

tion of energy levels for high energy particles.

3. Methods

The method for obtaining estimates of the Poisson stream parameter
is the following. We take as our datum the quantity M(t) which is
the observed total number of output counts from the detector in time T.

From M(T) we need an estimate, say f([M(t)], of the expected
number of counts, given X\, in time T, E{‘M‘X(T)]. Asymptotically,

i.e., for large T, we know by the law of large numbers that M(T) will




approach E(MX(T)] provided the variance of M(T) is finite. Now
since M(T) dis an asymptotically unbiased estimate of E{Mx(T)) we
choose f£[M(T)] = M(T). Thus M(T) is our estimate of the expected
number of cutput counts. The mathematical model will provide a relation
between the parameter A of the Poisson stream and the expected number
of output counts in a fixed time of observation T, namely

r(\) = E[MX(T)). We then obtain an estimate of ), call it Q, by

equating M(T) = r(\) and solving for A. Thie yilelds a unique,

asymptotically unbiased estimate provided the expression r(A) is
continuous and monotonic in A. In the case of counters the expression
for EfMX(T)] is derived from the Laplace transform of the inter-
arrival time random variable using results from renewal theory. In the
case of the photographic detector the expression for E[MX(T)] is de-
rived by direct argument.

The ideal detector is one whose estimate of A call it M\* has
the lowest possible variance in the class of unbiased detectors. When
we are dealing with Poisson inputs we can achieve a variance whose
lower bound is given by the Cramer-Rao Theorem. In this case we know
that & uniform minimum variance estimator of AT , when the process is
observed for a total time T, is N(T), the total number of input
events. This estimate has variance AT and hence the variance of the

best estimate of A, i.e., A* , is obtained from

(1.3.1) var{\*} = var(E%gl} =L var(N(T)} =

T2

Having settled on a method for estimating A and an upper bound

[

on the precision (lower bound on variance) attainable from any detector
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ve can define a measure of efficiency which will allow us to compare
different detectors.

We define the quantum efficiency of a detector as the ratio of the

variance of the estimate A¥ +to the variance of the estimate Q pro-
duced by the given detector. This efficiency is a function of both M
and the length of the time interval of observation T, (and other para-
meters depending on the model) although in many cases it will be inde-
pendent of T.

We shall be concerned here with asymptotic results and we shall
obtain the asymptotic quantum efficiency in the following way: We
obtain asymptotic results for ECMX(T)] =r(\) And then obtain the
asymptotic estimate a by solving the equation M(T) = r(\). To obtain
the asymptotic variance of this estimate we expand M(T) = r(x), in a

Taylor Series sbout. A\, the true value of the parameter,
A A
(1.3.2) M(T) = r(\) = r(\) + dfi—)(f‘z (Md) + eeonnes

or

da E(M, (T)}
dx

(1.3.3) M(T) - r(A) = ) # ceenn

Squaring both sides of (1.3.3) and taking expectations (ignoring
higher-order terms) we find the variance of M(T) is related to the

variance of the estimate of A by the equation

2 A
(1.3.4) var(u(n)) = (2 var(d)

11



e on s <o g,

or

A a E[MX(T)] -2

(1.3.5) var{i} = [ Ry . var{M(T)) .

Since the ideal detector estimates X\ by A* which we know has

variance X/T we note that the asymptotic efficiency, C'E,‘ is given by

_var(M | N(T)})
(2.3.6) ¢ - var(x | M(T)}

or

d E(M,(T)) 2
—_an
var{M(T))

=] b

(1.3.7) £=

The discussion in this study is concerned largely with such de-
vices as the radiation detectors and counting tubes used and studied
oy physicists, and for these the measure 5' is extremely useful.
Other measuies of performance would need to be devised for detectors
whose function it is to decide between alternative states of nature.
For example, in the case of two such states, a criterion of efficiency
might involve not only the probability of a correct decision, but the
time involved in reaching a decision. This would be especially true
in monitoring fallout, where the object is to decide whether the level
is or is not critical. A simpler criterion for evaluating a detector
which must decide which of two possible states prevails would be the
total probability of error over a given time span. We shall evaluate
a particularly interesting detector with respect to this criterion in

Chapter V.
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CHAPTER II
THE DEAD TIME COUNTERS

1. Results From Renewal Theory

We shall follow Feller (3) in deriving the Laplace transform of
the inter-arrival time random variable for the Type I and Type IT
counters, since the type of argument used, particularly for the Type II
counters, lends itself to deriving a corresponding result for a simple
coincidence counter mechanism. However before deriving these results,
we will look into some aspects of renewal theory which will be helpful
in arriving at the efficiency of the detectors under consideration.

What we require is a relation between the mean and the variance of
the inter-arrival distribution and the mean and variance of the number
of events that will occur in a given time. These results are discussed
by Smith (14), and an elementary treatment is given by Saaty (13). Let
Xi be the random variable which denotes tpe elapsed time between suc~

cessive events (renewals), all of which, except perhaps the first, are

assumed identically distributed. Then, we can write

(2.1.1) T, =X + oo + X

‘to denote the waiting time random variable up to, and including, the

nth‘ event. This waiting time random variable has a distribution re-

1ated to the distridution function F(t) of X,, which is given by

i’
t

(2.1.2) ™ ey - f F(0"1) (4.x) ar(x)
0

vhere F(n)(t) denotes the n-fold convolution of F(t) with itself.

13
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The X, are also assumed to be independently distributed.

i
Let exactly M events take place in a given time T. TLabel this

M(T). The probability of this happening is

(2.1.3) B, = M () - p(#¥1) ()

since this is the probability that the Mth

event but not the (M+l)st
event takes place prior to T. From PM‘ we can then derive the mean
and variance of the number of events in (0,T). Letting E{M(T))} and
var{(M(T)) denote these parameters, and p and 02 the mean and

variance of the distribution F(T), we have, from the key renewal

theorem of Smith (19) that, as T » @

(2.1.4) E(M(T)} = 1:.
and
e
(2.1.5) var{M(T)} = -‘-’—3 .
m

v

These results can be viewed in the following non-rigorous manner.

Heuristically we may write
(2.1.6) E{xl + oees + xM(T)] =y EM(T)} ,

that is, the expected time for M events should approximate the expected
time for one event multiplied by the expected number of events. Likevise

we may also write
var(X, + +++ + Xyo) = o“E(M(T))

remembering this is an approximation based on the same argument since

1k
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the variance of a sum of independent random variables is the sum of the

varisbles. Thus we may also write in the same approximate vein
2 2 £t |
(2.1.7) Efxl + oeee + XM(T) - u MT))® = o E(MT))

Furthermore, for large T we expect

(2.1.8) X  + oo+ xM(T) =T

The actual value is of the order T - 4, (recall p 1is the mean waiting

time for an event and thus for the first event) which for large M can

be approximated by T, hence using (2.1.6)

(2.1.9) E(M(T)) ~§

and substituting in (2.1.7) we get

2
(2.1.10) E(T - u M(T))? as-?-u—T )

Multiply both sides by 1/‘12 obtaining

2
T,2 ~ 0T
(2.2.11) E{M(T) - e

i
and since -E can be replaced by E{M(T)}, we get

(2.1.12) var{M(T)} =~ —x .

With these results in mind, we return to the evaluation of counters.
2. The Type I Counter

The operation of & Type I counter can be described briefly as

follows:

15
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A counter which immediately registers the
first input event and then only those input
events, which are not preceded during a
fixed time interval by a registered (output)
event.

The results for the Type 1 counter are those which are most easily
obtained. The dead time is assumed to be a constant 1 and the counter
operates on a Poisson process which has for inter-arrival distribution
of input events the negative exponential distribution l-e"kt « Thus
the inter-arrival time of registered events have a distribution (after

occurrence of the first event)

( 0 t<r
202.1 F t = é
) o( ) {1.e'k’(t'r) t>r1

Fo(t) is used throughout to describe the output inter-arrival time
distribution, F(t) has been and will continue to be used for the
irput inter-arrival time distribution.

The Laplace transform of t is

o (a) = [ e a0

(2.2.2) = j e"St M-X(t—f) at
o
A -8T
e
Since
(2.2.3) “ear (o) .- e
2.2.3) uaf t dF (t) = -
o o ° dt 8=0
and
16
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2
o a” o (s)
2.2.4 2+2--f 2 &F_(£) = 2 |
(&2.4 CRACRA o) at 8=0

we obtain the mean and variance of the inter-arrival distribution of

counted events:

AT+l

(2'2'5) p'o = A
and

‘ 2 _ 1

(2.2-6) Go = -:5

Employing (2.1.4) and (2.1.12), we get

AT

(2.2.7) EM(T)} = y=3

and

(2.2.8) var(M(T)) = ~2L 5 -
(M+1)

Before we compute the quantum efficiency, it is interesting to

note that for large values of A, that is, strong incident radiation,

we get
(2.2.9) E(M(T)) » T/
and

(2.2.10) var{M(T)} -0 .

This result can be viewed in the following way. In the limit as M - @

we get counts periodically and immediately following the end of the last

17




dead time, so that the number of counts becomes sirictly proportional
to the observation time; independent of )\, and thus the variance is
Zero.

The quantum efficiency is obtained from the expression (1.3.7)

2
(2.2.11) £=2 [;‘E.(’E‘é!).l_} Fr'f%ﬁﬁ

which, in this case, turns out to be

(2.2.12) ‘ E ='_>£. T (Ar+1)

(Xr+1)n AT
or

. 1
(2.2.13) é = 1

We see that for non-zero T the quantum efficlency tends monotonically
to zero as A - oo; that is, for strong radiation, the Type I counter
is not very efficient as an estimator of A. The number of counts
increases with the time of observation, but tends, for large X, to
become independent of the radiation strength and only a function of the
dead time. The efficiency depends on the arrival rate A and is in-
dependent of the time of observation T or the total number of incident

events.

3. The Type II Counter

The operation on the Type II counter can be stated as follows:
A counter which immediately registers those,

and only those input events, which are not
preceded during a fixed time interval by an

input event.

18
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We follow Feller's (3) argument is establishing the inter-arrival
time distribution of output events for the Type II counter. It should
be noted just from the physical situation that the number of registered
events in the presence of strong incident radiation tends to zero for

any given time interval T.

Let
(20301) P = e-)“r
and
(2.3.2) q = 1-eM

denote respectively the probability of a non-arrival and an arrival of
an incident event during a time span 1. Then the probability, once a
counter is paralyzed, that v events will prolong the dead time is

qvp. Let X, denote the elapsed time between input event numbers

i
(1-1) and 1. Then we can write

(2.3.3) T(v) =X

i+---+Xv+1'

for the total time that the counter is paralyzed by exactly v events.

by |

This is a random variable, conditioned on v, which is the sum of ¥

independent, identically distributed random variables. It follows

==

that the Laplace transform of T(v) 1is the product of e ®" and the

vth power of the Laplace transform of Xi. Once we have the transform

=

of T(v), we can multiply qvp and sum over Vv to obtain the Laplace

==

transform of the unconditional paralyzed time random variable which we

need to evaluate the Type II detector.

L= T

19
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The probability that an event will occur in a time (O,t) with

t <7 given that it occurs in a time interval (0,7) 1s

‘(2050 14-) l.e-k‘f = l-e
l-e qQ

and this is the conditional probability P[xi <t}, for i=l,...,v

and gives rise to the laplace transform

At

T -
| -5t Ae 1 -(M+8)T
(2.3.5) fo e 1_e'XT dt = R [1-e ]

so that the laplace transform of T(v) is simply

v
(2.3.6) 9,(8) = = (Fo)V [1-e”(B)T] oot
q

The unconditional Laplace transform is obtained by summing

o v
(2'3'7) X e-BT . %}_ {‘i‘}g [l_e'(X‘FS)T]}‘ qu

which yields

.(X+s)e- (S+X)T

(2.3.8) eyl

s + \e

This is the transform of the paralyzed time distribution. To

cbtain the transform of the inter-arrival time of registered events, we

must take into account the additional time from the end of paralysis

to the arrival of another incident event. The latter has Laplace

transform > o that we obtain finally the Laplace transform of the

A8

inter-arrival time distribution of reglstered events as

20
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= e

-(s+))7
A ,
o (e) = 3 - Lo

(2.3.9)
N e-(s+k)1’
4+ N e-‘(B"'XF '

The next step is, as before, to obtain the mean and variance of the
inter-arrival time distribution. It turns out, both in this case as well
as others, that it is much less tedious to obtain the derivatives of

(_’713 rather than @(s). Noting that

a1 , 1 .2
(2.3.10) rr [my] = -9'(s) [a-s-)']

and that ®(0) = 1 we have

(2.3.11) b= @' (0) = 2195 [6%’@] .
Also
2 2 -
‘ a 1 " 1 2{g'(s)]
2.3.12 = J=- [—(—7 :
( 3 ) d32 (P(S) P (S) (s ] + [q)(s)]3

so that since

‘ 2
(2.3.13) W2+ o = L5 [9(0)]
ds '
we have
2 2
2 d 1 d 1
(2'5011") g = - ;s-é [aco-y] +{'d;' [w]} .

For the Type II counter we have

1 = % e(‘X"'B)T"_l

(2.3.15) 7.5

(o]
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80 that
qa .1 -l (M+s)T 8T (M+8)r
(2.3.16) r [5:(3] Te +& e
and
(2.3.17) & [—-(-71 ] =28 (M), 512 o (M8)T
d52 q)o 8 A A
Consequently
d 1 1 At
(2.3.18) = [q)_o'(?)'y] =3e
and
(2.3.19) —‘f[—(—-;l ] = 28 M
d52 cpo 0 A
Hence
eM
(2.3.20) b =
and
art AT o
(2.3.21) Lo 2l
o] ).2 A

Again using (2.1.4) and (2.1.12) we obtain the mean and variance of

the number of counts in an interval [0,T]. These are

(2.3.22) E(M(T)} = AT e

and

(2.3.23) var(M(T)) = AT e~ [ - 21t]
22
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From these quantities we proceed to deduce the efficiency of the

Type II counter. Using (2.2.11), we obtain readily

r (T . e
5-5 AT
AM(e™ - 2xt) e

PEEE a)2

(eM-2n1)

(2.3.24)

The character of this result suggests that we look at tlhe Type II
counter a little more carefully. Formula (2.3.24) asserts that the
efficiency of this type of counter is unity when M\ i1s zero, decreases
monotonically to zero at M =%— and then becomes positive again although
it tends to zero for A =00 .

This type of behavior is not quite so surprising if we take another
look at the distribution of the output counts, M(T). From equation
(2.3.22) we see that the response function r(\) = E{MX(T)} is not
monotonic in A. As the radlation strength increases, the expected
number of counts increases only until M\ =%~ « For X >% the expected
number of counts actually decreases with increasing M\, since the amount
of time that the counter 1s paralyzed now becomes very large. A con-

sequence of this is that the function

(2.3.25) r(A) = AT e~

has no unique inverse. The only way to infer a unigue value of A
from a single observation M(T) is to have additional information

about A vhich guarantees that either M\ is less than -1,; or A 1is

larger than % +« In the absence of such information it is necessary to

have an auxilisry experiment. We could, for example introduce an

23
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absorption device into the Poisson stream which reduces its intensity
by a known factor Q. The reduced stream of ‘intensity Q» will, if
A< % » Droduce a reduced expected number of counts in time T. If

A >'% and Q 1s near unity we would tend to get a larger number of
output events from the reduced stream. This auxiliary experiment would
thus allow us to estimate, uniquely, the parameter A\ of the Poisson
stream. We see from this that it should not usuelly prove to d’fficult

to obtain a unique estimate of A from two observations of M(T).
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CHAPTER III
COINCIDENCE COUNTERS

1. Introduction

A number of different problems in a variety of contexts can be con-
structed, all of which have at their core the existence of an integer
valued random process, Xj(t), which, starting from the state So
strives to reach some preassigned state SR' The process can increase
by integer amounts, but if no jump occurs for a sufficiently long period
of time, the process will revert to its initial or ground state, and

must begin its climb towards state S, all over again.

R
We can imagine a psychologist constructing a complex learning

or maze experiment in which "success" depends on the performance of

R successive tasks, and if any task is not performed with sufficient

alacrity, the subject must begin from scratch. Such a process also

occurs in the study of photographic detectors, in the study of Lasers,

and, in fact in a great variety of scientific and engineering situations.
The fact that neither Type I nor Type II counters (and presumably

intermediate types) are very good detectors for large values of X

would lead one to suspect that in those cases where an extreme range

of parameter values A 1s a priori likely to occur, different counters

ought to be employed. As the discussion of coincidence counters will

show, this type of device should prove of some value in such cases and

moreover it provides a new model for various physical situations such

as those mentioned above.

25
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2. The Simple Coincidence Counter

As model for a simple coincidence counter, we shall consider the
following mechanism: An incoming event impinges upon the counter which
is so constructed as to be able to hold this event in memory for a
time 7 (a fixed constant). If another event occurs during the time
that the first event is in memory, the counter registers an output
event and resets its memory to zero content. If no second event occurs
during time 17, the first event is lost, that is, produces no count.

The forual definition of a simple‘coincidénce counter can be
stated as:

A counter which immediately registers an
output count whenever an input event is

preceded during a fixed time interval =
by a nonregistered input event.

Such a situation may be obtained, for example, on & photographic
emulsion in which the first photon incident on a silver halide grain
creates an electron-hold pair which has a lifetime 1t before recom-
bination takes place. If, however, another pair is formed shortly
after the first, a latent image speck, that is, a developable silver
nucleus, or, at any rate, a stable, sublatent image speck (i.e., a
stable speck but one too small to be developed) may be formed. Another
conceivable situation in which a coincidence counter model might be
useful is that of light amplification by stimulated emission of radi-
ation — the so-called LASER. In this device, photons are required to
be stored until a sufficient number are accumulated which are then re-
leased simultaneously to produce an intense monochromeatic, coherent

light pulse. If an insufficilent number are captured during the holding

26
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time of a ruby crystal or other lasing material the photons which arrive
during this,pimz do not produce a light pulse and are wasted.

It should be noted that the coincidence model suggested above dif-
fers from the general counter model proposed by Takacs in that the oc-
currence of an event within 1t wunits of an earlier one produces a re-
generation point (in effect, a new origin) for the output stochastic
process in our case, but not in Takacs' case. In his procees, an output
event could occur after the arrival of both the second and the third
input event. In our model, that would be considered physically im-
possible. To get two output counts, at least four input events are
required.

The Laplace transform of the output inter-arrival time random
variable is derived as follows: Beginning at a time when an 223253
o’ x1’
further successive input events. Assuming that the Nth‘event produces

event has just occurred, let X Xe,... denote the time between
the f}rst count, we have Xl > 1, X2 > T""’XN-l > 1, but XN <7
(note that there are no conditions on Xb). Let T(N) = Xo+ Xy 4ot X
denote the total time between output events. Then the conditional

laplace transform of T(N), given N, 1is
N-1

-8X -8 -8X

(3.21) EleTMix] = gle °) Ele "Hx, >l Ele Plx<l.

Noting that the conditional probability that two input events are X
units apart, given that they are not more than 1 wunits apart, has

density

(3.2.2)




we £ind the conditional laplace transform (i.e., the transform of this
conditioned random variable) is
-8X T ex aeM L Maen (BT
(502.3) E[e IX 5 1’] :f e ' —.:.x; aXx = v
0 l-e (s+))(1-e"")
Similarly, if we know that two input events differ in time by at least

T units, we obtain the conditional Laplace transform

oo Y ¢ ~(s+)\)7
(3.2.1) Ble*¥|x > 1] = f X de gy 2T 2
T e (s+\)e

From these results we obtain the conditional lLaplace transform of
T(N) given N

-gX

N-1
Ele™®T|N] °lEle XX > 1) Ele™®¥|x < 1)

n
=i
—

(1]

X >Ve-(s+)»)"r N-1 x(l-e'(5+x)1

ME C(an)e ™ (s+h)(1-e")

(3.2.5)

( A N+l e-(N-l)(s+h)r l_e-(s+X)1

) — . .
"5 o-(N-1)A7 Lo ™ |

To obtain the unconditional transform of T(N) we multiply by the pro-

bability that the first output event will occur at the Nth input

-M') (e-M)N-l

event, namely, (l-e and sum over N obtaining

(3.2.6) ™) = T EleT|NI(1-e" ) (e .
N=1

This yields

© -(s+A)T N-1
(3.2.7) E[e™5T) = (xﬁ#)a‘(l-e'(x+s)1) Y e ]

+
& N=1

s+\
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and after suming the infinite series

2 g -(Me)e
(3.2.8) %, () = (r35) 2= —
e 8)7
1o

In this formula, the term Xe/(k+s) represents the transform of the

walting time for the second input event of the Poisson stream. As

© - the second input event can be taken as producing an output

event, which is what we would expect of an infinite memory device.
Proceeding in a fashion similar to that used for the Type II

counters, we obtain after some manipulation,

1 A8 ]

(3.2.9) FROBRS [;z;:;:rxxgy;; + 1]

(o]

& =] =3[ = *+ 1]
ds 7¢°lsi ] A X(l_e-lk+s$r

(3.2.10)
x+ (M+a)T
== [ L e ]
-is-ﬂ.;r _—e_(x.rs').r_)é
1 ) 2
[ :] > '(1-e'(**55')]
-(S+X)T
(3.2,11) + b:g . % T
+8 [ res ]
so that
' -\t
(3'2‘12) = l -+ 1 = 2-e
uo A X(l- -XT) X( 'XT)
29
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(3.2.13) Al e el e

Now

-\t
(3.2.14) B (1) o 2Eloe )

2-e

-\t
(3.2.15) var(m, (1)) = tﬂ%x:_)rz e -2(2-67V) + (2-¢7)?)
-e

Let us nov differentiate E{Mx(T)] with respect to A

£ B4 (1)) = T(2-e)(2-7M)"2

(3.2.16)

+ e M (2-e" M) L iate "M (1-e72) (2-e"¥7) 2 .

Hence the efficiency of the coincidence counter is

¢ = Ar(1-e7 ) (2-e) T 4+ aape T (2-672T) "1

(3.2.17) -\t (1-7M) (2-M) B2 x
( (2-e7)2 |
XT(l-e;XT)[XTe'Xr-z(l_e?XT)+(2_e-kr)2]
or

l(l-e-XT)(2-e-XT)’1+XTe—XT(g-e-xt):l_xr(l-e-XT)(2_e-x72:2e-¥zl?

(3.2.18) € =
(1-e'xr)2(2-e'xr)[rke'XT-2(l-e'xr)+(2be'l')2]
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Such a coincidence counter resembles a“ Type I counter in that the
expected number of counts ‘E[Mx(T)] is monotonically increasing in .
It differs from this type of counter in that the expected number of
counts is asymptotically proportional to the number of input ev‘ents‘ as
7 becomes large. This i1s also reflected in 1its quantum efficiency
which, although more complex 1r; form, tends to 1x.1crease‘ from zero for
A =0 to 100 percent as A tends to infinity.

The response function, r(k)‘, of the colncidence counter is
clearly monotonic since formula (3.2.16) which is its derivative has
no zeros in (0, ). Also, as is apparent from the expression for
f ;» the efflciency of the counter in estimating the parameter of a
Poisson stream is independent of T.

In actusal practice a coincidence counter could be expected also
to have a short dead time after registered events, so that a cross be-
tween a Type I and a pure coincidence counter would have to be considered.

It 1s also interesting to speculate as to the suitability of such

a counter for separating a periodic signal from contaminating Poisson
sources. If, for example, a coincidence counter with variable time
c.:onstant‘, T, could be constructed and & periodic pulse'with repetition
rate xo were incident as well as a Po:Lséon source with mean rate A\,

we would have that
(3.2.19) ' E(M(T)} =T

for 1t a little less than Xl and M << A (since, in combination
(¢]
with an adjacent periodic pulse every random pulse produces a count )

but

.51




(A )T
(3.2.20) E(M(T)) = —p—

for t> s 80 that a discontinuity in the plot of E[M}‘(T‘)] as a

1

function of T would indicate the presence of the periodic pulse
train if present. (For 1t << A\, ve would expect that periodicity

would be irrelevant so that in that case

: (M )T
(x+)_ ) E(l-e  °
E(M(T)) = ——ryye
- )

2-e

as in (3.2.14)). .

Coincidence counters have been constructed and used (15) to study
radiation which does not have Poisson character. Here again, the plot
of E[MX(T)‘] for fixed mean input rate A and fixed observation time
T, but varlable time constant 7t should be useful as a comparison with
one obtained from a known source. One can use it to infer the existence
of non-randomness in the unknown source as well as to estimate the

parameters of interest.

3. The R-Fold Coincidence Counter

One natural extension of the simple coincidence counter is to per-
mit input events arriving wit.hin specified time intervals to change
state levels of a counter, and allow the registering of an output event
only after a terminal state, say after the Rth input event, is reached.
We term this the R-fold coincidence counter. For R = 2, this reduces
to the previouaiy described simple coincidence counter which has two
1° Then an input event changes the counter from So‘
to 81, and if another event occurs before time <1, an ocutput count is

states So and 8
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registered and the counter immediately reverts to 'So' The counter also
immediately reverts to So at time T without registering if the input
does not arrive within the time interval.

Briefly we can describe the R-fold coincidence counter as follows:

A counter which immediately registers an
output event whenever an input event is
preceded by (R-1) non-registered input
events none of which are spaced more than
T units apart and T is & time interval
of random length whose (R-1) values are
independently and identicslly distributed.

Here we shall derive the waiting time distribution (or, rather, its

laplace transform) for the first time occurrence of the critical level R

in the case where the waiting time between upward jumps of unit magnitude

has negative exponential distribution, F(t) = 1-e™. Thig 1s equiva-

lent to the assumption that input impulses constitute a Poisson process.
We also assume that all the levels SJ, J=1,2,...,R-1 can decay only

to So and that such decay takes place at the end of an interval of
duration 13 following the latest incident impulses. We assume that
each 1J ié itself a random variable with absolutely continuous density,
and with distribution function G(t) which is independent of S, and

J
the times of occurrence of the states S,. The special case R = 2;

J
6(t) =0 for < L G(r) =1 for t> Ty Va8 treated by another
method in the previous section.
We shall not attempt to evaluate the efficiency of such a general
‘coincidence counter explicitly since the mathematical manipulations be-

come too tedious and ummanageable. Ad hoc cases of special interest

can be handled by computers. Our concern in this section ie primarily

33




to arrive at the formula for the inter-arrival time distribution from
which, by the methods covered in earlier sections, the efficiency can
be derived for those specific cases that may be of intereet.

The process with which we are concerned is non-Markovian in the
sense that merely knowing which state SJ, J=1,2,.+.,R=-1, the process
is in at a given time t 1s not sufficient to calculate the probable
behavior of the process beyond this time. In addition, w2 need to
know how long ago the last impulse occurred. The only case in which
such knowledge is not needed is when at time t+ the process is
discovered in state So'

We shall write pd(t,f) for the probability density that Jointly:

a) at time t the process is in state S b) that it reached this

3’
state 1t time units ago, that i1s, at t - 7T; c) that the state at

t =0 is S° , and that previous to time t the state R was not
reached. Now the probability that a decay to So takes place during
the small interval (t,T + B8) after occurrence of the last impulse ie
8 G'(t), and the probability that no decay takes place during the time
interval (t-t,t) 1s 1-G(t). Hence the conditional probability of
decay during the interval (1,7 + ), given that no decay has taken
place during the elapsed time +t since the last immilse, label it

8.u(t), is given by

(3.3.1) S.u(r) = 5-6'(x)

1 - 6(<)

Later on, it will be useful to consider the solution of this differential

equation, hence we note here that from the above one can obtain

34
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(50502) G,(TJ) = ]l-e °

The function u(t) is sometimes called the hazard function, and has
been discussed, for example, in connection with telephone call demands
and other queuing problems. In the particular case where G(t) 1eg a
negative exponential distribution, it is seen that u(t) 4s constant,
so that the conditional probability of decay after t time units from
the last impulse have elapsed is independent of t. It is in that
sense that the negative exponential distribution is said to have no

memory.

We shall derive here a set of differential equations from which the
laplace transform inter-arrivel time distribution of output counts can
be obtained. First let us obtain the probability that the state of the
process will be sJ (J >0) at time (t+8) and that 7+8 time units
have elapsed since the last impulse, given that at time t <the time
elapsed since the last impulse was T and write it as a function of

pd(t,r). We assume here that, for small 8, the ﬁrobability of an

AT

= pvnq ey ey e ey ped pu MM UM g Um W

impulse during a time interval & is A3 and the probability of no
impulse is 1-A8; and that other cases have such small probability

that they can be neglected. These are the usual assumptions linked

to the fact that the input impulses form a Poisson stream. In terms

of pJ(t,T) and the hazard function u(t), we can write

(3.3.3) pJ(t+b,r+B) - (1-M)(1-au(r)')pd(t,r)
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or, nsglecting terms in 62 since 8 is assumed smmll we get
(3.3.4) P, (t+8,748) = [1-38-8 u(1)]p,(t,7) .

If during fhe interval (t,t+8) an impulse occurs, we have, for

the probability that the state is S 3 at t+5 and that the time ¢!

since the last impulse was less than & [denote this by pJ(t+b,t'< 8)]
, r OO
(3.3.5) pJ(t+b,t'< 8) = Abf (l-bu(r))pd_l(t,r)dr
<]

vhere the integrand on the right represents the probability that the

state wvas S at time t , had been attained T time units earlier;

J-1
and did not spontaneously decay in the time span (t,7+8) following

the moment it was attained. Since all possible times, 7, of attain-

ment of the state S must be considered, the probability of no

J-1
decay from state Sj-l

Q©
during (t,t+8) 1is f (l-bu(r))pJ_l(t,t)dr.
Again neglecting terms in 62 this becomes

o

)
(3.3.6) pJ(t+6,‘r'< 8) =8 f pJ_l(t,‘r)dt .
)

oo}

Note that f (t,7)dr 1is the probability that the state is

o F3-1
S'J-l at time t regardless of how long ago the state was attained.
For use later on we note that we can approximate pJ(t,6,1'< 8) by
bopJ(t,b,'t' = 0) since the time interval 8 is small, so that the
probability of an impulse at some instance t' in (0,3) is nearly

the same for all 7T' 4in this interval [see (3.3.20)].
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These considerations hold for J=1,2,...,R-1. For state ,So, wve

have

(3.3.7)  p(t+8) = (1-M8)p (%) + Ril (1-38) foo 8 u(z)p,(t,7)as
J=1 Jo
i.e., the probability of being in state S° at time t+8 is the pro-
bability of being in that state at time ¢ and having no 1né1dent
events in (t,t+8) plus the probability that a decay occurs in the
period (t,t+8), when the process is in state SJ (3=1,2,...,R-1) at
time t and no incident events occur during (t,t+5). Note that the
integral under the summation represents the probability of a decay in
the period (t,t+5) when the process is in state SJ (3=1,2,+4.,R-1)
at time t and this probability is independent of how long ago the
state S, was attained previous to time t. Similarly for

J
po(t+6,t’< 8) we have by (3.3.5)

[0 o]
(3.3.8) B, (£46,1'< 8) = xs] (1-80())pg_y (t,7)ar ©
o]

In the period (t,t+8) a transition from state Sp.p ‘to state Sy
may occur thus causing the process to revert immediately to state

So and register an output count, or we may write

-1
Xu(t)pj(t,f)df

R
(3.3.9) P, (t+8) = (1-A8)p (t) +
' J=1J0

and

(s o]

@
(3.3.10) po(t+6,1'<‘b) =j’ po(t+6,6')d&' = ij; pR_l(t,r)dr

o
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1f terms in 8° are neglected. If in (3.3.4) we transpose pJ(t,f),

then divide each side of the equation by 8 and pass to the limit,

wve obtain
p,(t+8,7+8)-p,(1,t) ,
11 J - 1m . 20%u(x ‘
80 TJ B0 _...%&S_ll Py(t,e)
or
op, Op
(3.3.11) St = -0+ (D) (1)

This is so for J=1,2,...,R-1 and similarly from (3.3.9) we get for

J=0
tlpo R-1 ro0
(3.3.12) I = - Po(t) + ng . M(T)Pa(t:")dT .

These are the differential equations whose solutions will provide the
inter-arrival time distribution of the cutput counts. First we will

obtain an expression for the probability of attaining state R at

some point in [0,T], IT pR(t')dt' . From this we find the probability
density for the wait\ingotime until state R 1s reached. This is
obtained by differentiating f ' pR(t')dt' with respect to T, since
this can be interpreted as th: probability that the waiting time for
reaching state R will not exteed T. The remainder of this discussion
is therefore concerned with obtaining this distribution by developing
its Laplace transform.

Equation (3.3.11), treated as a differential equation in the

variable T, can be golved by taking the Laplace transform with
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respect to the variable t. Label ﬂa(l,r) the laplace transform of

pJ(tn) or

. o
(3.3.13) ﬂd(s,r) -f e 5t pJ(t,T)dt
o]

Now take the Laplace transform of each side of (3.3.11) and (3.3.12) and

note that
oo dp
-8t -0 _ ‘
(3.5.1’#) j; e T dt = - PO(O) + 8 ﬂo(B)

with po(O) =1, while

op
(3.3.15) foo St g‘i at = - PJ‘(O‘,T) +8 ud(s,‘r') =8 ﬂd(s,v)
o

with po(O,‘r‘) =0 for J £ O.

Hence equation (3.3.11) becomes

(3.3.16) 8 st;j(s,'r) + %? ﬂJ(s,r) =-[x+ u(TS]ﬂJ(B"T)
and thus by rewriting we get
T
-f w(x)ax
(3.3.17) xy(8,7) = x,(s,0) & (EMT ¢ 70
or, using (3.3.2)

(3.3.18) n,(s,7) = x,(s,0) e (BT a(e))

Since we are concerned only with the marginal distribution of

'pJ(t,r), we integrate over 1 +to obtain [setting 1-G(t) -8(1)) and
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using & star, *, to denote the Laplace transform)

(mmw)fm ﬁmﬂm-%hmxrnihﬂhwﬂm-%um)vhﬂ).
[s] (o]

From equation (3.3.5), we obtain in the limit as is already indicated

in the discussion following that equation
00
(3.3.20) p.(£,0) = Py (ty7)ar
3 o T3
and, taking the Laplace transform,

[ o]
(3.3.21) ﬂJ(s,O) = k.fo ﬂd_l(s,r)d‘r

for § =1,2,...,R. Since transitions from the state So do not

depend on T, we have

(3.3.22) =(s,0) = 1 x_(s)

Using (3.3.19), (3.3.21), and (3.3.22), we obtain
(3.3.23) y(8,0) = (g (s+2))37 A x ()

From (3.2.18), we obtain

(3.3.24) [ T xylen) woar = x(e,0) [ ICLOL qe) w(rses
(o] ’ [
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R-
(3.3.26) -1+8 no(s) = <)\ no(s) + 7

and using (3.3.1), this becomes
(3.3.25) fm nd(s,f)p(‘t)dx = ud(s,o) fw e‘(""‘)' G'(7)as
o )
= uJ(s,O) G'* (a+\) .

Finally, we take the Laplace transform of (3.3.12).

l r00
‘ uJ(s,r)u(t) dr
J=1 Jo

and substituting the result (3.3.25),

R-1 ,
Y ﬂo(s) + 3 ud(s,o) 6" *(a+))
J=1

(3.3.27) -1+ sno(s)

R-1

J=1

On’summing we obtain the result

-Ax_(8) + 7 (s) @ (80) x § [3*(s+x)l~"1 A,

‘ R-1
(3.3,28) -1+ 8 "6(8) = =) no(s) + G'*(s+k) 1y no(s) [1’{X g*(s+2))

1-A 3*(s+>\)

or,

1

(3.3.29) x(8) =

1=\ %ﬁ(s+k)

If we let H(t) denote the probability that a count (that is,

state sR) is attained in the interval (0,T), we have from the

fact that

k1

e




T
(3.3.30) R(T) -f pR(t‘)dt'
o

or, on ditferentiatiné s

(3.3.31) R'(T) = pg(T)
that
-stR
(3.3.32) Ele ] = [H'(T)]* = n.(s)

is the desired Laplace transform of the waiting time distribution

towards which we have been working. For state SR , We also have
(3.3.33) np(8) = np(s,0)

since the system immediately returns to state So' Hence, using
(3'3-21))

o

(3.3.34) O Ry A RO
i (o]

and substituting from (3.3.19),

(3.3.35) () = A np ) (8,0) [*(s+))

or, iterating this substitution as in (3.3.23),

(3.3.56) x(8) = R (@) )Pt 1 (0)
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Thus,

-8t

(3.3.37) Ele ARgu(an))Rt

8 + A-AG*(g4)) 1’£JJ°*")) ]
1-) 3*(s+x)

R]‘

is8 the laplace transform of the inter-arrival arrival distribution of

" output counts from the general R-fold lLaplace transform coincidence

counter.

For R=2; G(t) =0, for T <7t and G(t) =1 for T2T,

which 1is the case treateéd previously in Chapter 3, section 2 we have

u( +A
(3.5'58) G'*(B+X,)’ -ITO e’(s+k)" 4t = e 8 )TO
10
and,
. -(s+x)1°

1-
(3.3.39) Ble 2] = (32)° °X =

l-(-i+—8)e

which 1s the result previously derived for this case by the conditional
probability approach used in that aéction.

Another interesting case which is mathematically tractable is that
in vhich G 1is a negative exponential distribution, G(t) = 1-e7f°

In this case we find

© .
(5.5."0) G'(‘*(S"‘k) - f "(S"'X)‘l’ - d“ - '+§‘+g‘
2 '

and

5§+>." 2%

-8ty 22524202502 s40
LTV AP NRPEVCATTRS. N, N

(3.3.41) Ble ] =
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CHAPIER 1V
QUANTUM EFFICIENCY OF FHOTOGRAFHIC DETECTORS

1. On the Problem of Specifying a Measure of Performance

In one sense, the perfect photographic detector is one in which

. only a single incident photon is required to make a grain developmble.

Consequently, if an average of AT photons is incident per grain
during the time of exposure, T, and if the Poisson distribution ap-

plied, the probability of a grain being made developable is the sum

of the probabilities of 1, 2, 3,... photons incident on a grain i.e.,

® J
(4.1.1) H,[0,T] = H(M) = } e -(%L =1
J=1 ’

An "imperfect" emulsion, however, can be constructed in at least three

WaYS.

In the first place, the grains may not be tightly packed. In this
case, even though the flux in photons per grain is AT and a fraction

H(AT) of the grains in a tightly packed emulsion could be made develop-

able, only a fraction Q'H(MT) are actually made developable, where
Q 1is the ratio of the number of grains present to the number that
could be ‘packed into the same surface area. If only a single photon
is required for developability, the fractional number of grains made
developable in such a case is
4 : il J
(4.1.2) QH(MT) = Q 32'1 e M %‘Q—- = Q(1-e77)

In the second place, the grains may not be good absorbers, so

that the effective flux per grain is not AT but, say, QAT , vwhere

Ly
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Q now denotes the absorption of a grain. This is egquiwmlent to assum-
ing perfect absorption and placing a filter of transmission Q over
the emulsion. Then the mmber of grains made developable (assuning one

photon per grain required for developability) would be

(4.1.3) Ry(AT) = F T 133:"2)3. 1.e"PT
J=1 ’

However, it is also possible to think of the photographic detector
as being imperfect in the sense that a grain might require R = l/ Q
photons to become developable. (In this case we can think of Q as a
measure of the inertia of a grain.) If each grain were so constituted,
the fraction made developable would be the sum of the probabilities of
R, R+1, R+ 2,... photons incident on a grain, i.e.,
H (M) = J M %i}'ﬁ

J=R

(4.1.%)
ap)R-1

-AT
= Y- " [1+NT +eeot =TT

]

Formulas {4.1.2) - (4.1.4) indicate the three quite different
ways in which a "fractional utilization factor, Q" could be introduced.
In general, an emulsion will be imperfect as & result of all these

reasons. For a combination of the last two reasons we could write

- J
(4.1.5) HR-Q(KT)‘ - JIR o~ WT g%‘:;

or, even more generally,

- -] o0 J
(4.1.6) HR’i’Qﬁ.’Q(M) - 121 Q v e-(QM‘) (Q&J'fz

=Ry

b5

SR




in case the emulsion consists of a variety of grains and the fraction
Qi of the population requires Ri photons for developability. In
formula (4.1.6), Q, represents the fractional area covered by grains
of inertia R1 vhen all the grains absorb a fraction Q of the in-
cident energy. {(Holes are considered as grains with infinity inertia.)

Aside from the fact that "fractional utilization" factor 1s’an
ambiguous notion as shown above, there are other reasons why the old
definition of quantum efficiency as a ratio of number of output to
input events (which is linked to the notion of fractional utilization)
is not a good measure of performance.

If every input event gave rise to a single count we should like
to say that the detector has a quantum efficiency of unity. Even if
every input event gave rise to several counts we should still wish to
speak of the device as having unit quantum efficiency, and we should
consider each aggregate of counts produced by one input event as a
single output event. Suppose, however that on the average, only every
other input event is effective in producing output events and that for
each output two counts are registered. The ratio of output to input
counts is one and yet a detector in which every input event produces
an output count may be viewed as superior. It follows that a different
approach to a unique and meaningful definition of quantum efficiency
is called for--one which cannot only be computed theoretically but
can also be measured experimentally. This is accomplished by applying

to photographic detectors the concepts developed in Chapter I.
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2. The Quantum Efficiency of Simple "Photographic" A-Detectors
We shall consider a (simple) photographic detector as;an ensemble
of go-no-go detectors, each of which is capable of responding Jjust

once immediately following the arrival of the Rth

" event. Consequently,
further arrivals at a detector having already received R "hits" are
wvasted, and cannot be transferred to another detector or registered
in the output. The photographic detector is unique in that it can
operate simultaneously on a large set of Polsson processes, namely,
on all those sources in space which are imaged on the face of the
photographic plate. Also, because of imperfect imaging and scatter
within the emulsion, a Polsson point source is imaged, not on one,
but on a set S of detectors (or photographic grains). Thus, in
comparing the intensity of two point sources, the output from 28
detectors must be compared. An ideal non-photographic ensemble of
S detectors exposed to a Poisson source of intensity A for a time
T would provide an estimate 'i. of A with a variance of g% , assum-
ing the set of S detectors to operate independently of each other on
the same Poisson source.

If we suppose that each photographic detector requires exactly R

hits to become developable and retains its developability indefinitely,

then we can calculate that the mean number of detectors responding to
an intensity A (per grain per unit time) after an exposure time T

will be

w7
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8-H(AT) -st‘fj e ”’ ]

J=R

R-1 3
=AT AT
= §(1l-e S—l-L]
J§O J

Now if H 43 the probadbility that a detector will respond, and

(k.2.1)

if S8 independent experiments are performed, the probability that

exactly k responses are obtained is

(4.2.2) p(k) = () B¢ (1-0)°°*

and hence the variance of the number of responses is
(4.2.3) of = 8-HOD) [1-HOD)] .

Since (4.2.1) yields the response function r(AT) of the photo-

graphic detector (known in photographic theory as the characteristic

curve)and (4.2.3) the variance of the output, we can use (1.3.5) to

obtain the variance of the asymptotically unbiased estimate of AT ,

“L(a1), s0 that
(4.2.4) var(Ru(m) - B3 My -2

As indicated earlier, the ratio of this variance to that of the ideal
detector 1s a measure of the efficiency of the detecting process.

To illustrate the calculation of quantum efficiency with a simple
example, suppose that we have a photographic detector requiring one
photon hit to make each grain developable. If the total radiation on
one grain during the time of exposure has average AT, the fractional

number of grains which will become developable is
L8

.
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® J
(4.2.5) HOD) = 3 o T RS -
I=1 v
If there are a total of S8 grains within a given area, we expect
there to be
(4.2.6) S[E(T)] = 8(1-e"*T)

developed grains after exposure and processing. Due to random varia-
tions in the incident events, there will be fluctuations in the number
of developed grains from one area of S grains to the next. The

standard deviation of the number of developed grains is obtained from

the binomial distribution and 1s 7 S(l-e'm)e'm‘ (using 1-e T o

the probability of success). The estimate of A is
A -
(%.2.7) » = HYT) = - % log(1-H(AT))

and the variance of the estimate is by (1.3.5)

var[?»]

‘ =2
var{S[H{AT)]] [ﬁgié%‘ﬂ]

(%.2.8) o
se (1M

S2 T2e-2X‘I'

A
whereas the variance of A 1n the case of a set of S ideal non-

photographic detectors is
’): A
( h. 2 . 9) var[ ] = EE .

Thus the quantum efficiency is

kg




=2AT
¢ = £0mRa) = gy (%Ti"rw)—m
L= e

(4.2.10)

_ are”M
. : T b4
l-e”

and this depends on the total expected number of input events AT

rather than on the input rate A. We also see that 5 is a monotonically

decreasing function of AT, and that the one photon photographic de-
tector has 100% efficiency only at AT = O. For given X, this de-
tector becomes increasingiy inefficient as T increases. The photo-
graphic type of detector is a saturating device which has infinite
memory.

In general the photographic detector requiring R photons for
developability has its peak quahtum éffic:lency at about AT = R-1.
This follows from the fact that dH/d(M) is a Gamma function in AT
with parameter R-1, and hence its mode is at R-1l. It follows that
if the background radiation is known to have mean value AT, the ideal

photographic detector is the one which requires R = AT + 1 photons

for developability rather than one photon. At the value of AT = 1, the

efficiency of the R-photon detector has the form

-(R-1) R-12
N R

Using Stirling's formula for n!
1
n+3x
(4.2.12) nt ~v2x n 2 ,-n

we obtain

50

i

el wemd  bwed el bemd  eed bl

¥y e
PRV [

et B R



1

I

oo B = —~ S woa]

St

(8.2.13) &~ wammy

The maximm value of H(1-H) 1s .25, so that a lower bound for the

quantum efficiency peak value is

2 ‘

independent of the number of photons, R, required for developability.

This is perhaps the most surprising result concérning this class of
radiation detectors.

When the de'téction problem is dne of detecting the smb.lle,st pos-
sible incremental signal for a given radiation baclkground,‘ the corres-
ponding R-photon emulsion must be considered as the id‘gal photographic
detector; the efficiency of an actual emulsion relative to this detector
is obtained by dividing the maximum qua.r‘xtum efficiency of the actﬁal
emulsion by the quantum efficiency of the appropriate R-photon photo-
graphic detector. This yields a somewhat higher value of efficiency
than appears in the literature.

However, even the higher value of efficiency obtained in this
manner is not a really fair index of improvability for actual photo-
graphic materials. The reason for this is that the assumption of a
given background radiation is unrealistic. We do not know the strength
of the background radiation. This means that the photographic detector
must have a certain latitude. The latitude we require is a measure of
our a priori ignorance as to the strength of the radiation background.
All ve can do in the face of this ignorance is to make the quantum ef-
ficiency as uniform as possible for the range of background radiation

strengths that we expect to encounter., If, for example, we expect s
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range of 1 to 10 photons per grain area for the background radiation,
we might teke for our ideal photographic detector a composite of
R=1,...,8. Such a composite detector made up, say of an equal number
of grains of each type has a more uniform, but lower, quantum efficiency
than a one-photon detector would have. If a still greater latitude is
required, say for a range of AT's from 1 to 100, a uniform quantum
efficiency over this range can be achieved only by using a still greater
range of R's.

If we wvant to determine the optimum response curve over a given
range, ( MoTs >.1T) for uniform quantum efficiency throughout this

range, we proceed as follows: Since

2 ‘
(+.2.15) £ B ¢ mom
and since we require
(4.2.16) | ¢ = constant AT < M <A, T
we obtain
) 1 1 1
(4.2.17) B'() =62 BOD)[L-EODNY/0nE .
This leads to
1 1 1
(1.2.18) ROT) = stn? (£2(0D)2 - (\ D7)

1 1
with )LOT‘ < \T < [n/2 Ea + ( koT)2]2 for the response curve having the

optimum shape. With A T = 1 and & uniform quantum efficiency of 1%

2
a value M7 ~-,£m ~ .250 is cbtained. Te range s thus 1 to 250,
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.Conversely, if the range is restricted to the values ).OT =1, ).1

the greatest possible uniform quantum efficiency is found to be about
2.5%.

It follows from these considerations that actual emulsions, which
have, at present, a peak quantum efficiency of between 0.5% and 1.0% ,
differ .from the attainable optimum by & factor which is certainly less
then 10, The improvebility of photographic materials, given the con=
straints imposed by pictorial photography, is thus much smaller than
the factor of 100 which was believed possible, and no further dramatic

breakthrough in photographic "speed" should be anticipated.

»

3. The Photographic Detector with Reciprocity Failure

As in the previous selction, we postulate that a photographic
detector consists of an ensemble of go-no-go detectors. Once one
of these detectors has acted (i.e., once a silver halide grain has
become developable), further incident hits are wasted. Reciprocity
failure means that the photographic detector responds not just to the
total number of photons, AT, incident during the time of exposure,
but reacts differently, depending on whether for AT = constant it is
the time of exposure or the strength of radiation which is large.
There are two types of reciprocity failure; high intensity failure,
which can be attributed to a type of dead time phenomenon as in a
Type I counter, and low intensity failure, which can be thought of as
due to the finite memory of a coincidence type of counter mechanism.

Diverse explanations of this phenomenon have been given (9) but the

crucial experiments to determine the precise mechanism whereby reciprocity
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failure is produced have not yet been attained. Consequently any model
vhose consequences are in reasonable accord with existing experimental
data can provide a stey forward.

We essume here that for photons in the visible region there is
not sufficlent energy to produce a developable grain. As is well
known, at shorter wave lengths there is enough energy in a particle
to trigger one or more photographic grains, and for such particles
the problem of reciprocity failure does not arise.

For low intensity reciprocity failure, we assume that a photon can
produce an imbalance in a silver halide erystal which can persist for
a time 1. Another photon incident during this time will cause this
imbalance to cease by producing ah atomic silver speck. Such a speck
may, or may not, in itself be developable. If it 1s, we have a two-
photon photographic detector with low intensity reciprocity failure.
If t 1is infinite, this reduces to the type of photographic detector
discussed in Section 2. It may be necessary to have a larger speck
of silver to produce development than one obtalned from two photons.
If we assume that the two photon speck is non-developable but one
twice as large is developable, then two further photon hits within
an interval 7T are required to produce either another speck or to
enlarge the one already formed. Since actual emulsions are a mixture
of grains of varying sensitivity, we would have to combiné various
models to simulate an actual photographic material. Here we shall
content ourselves with some discussion of the two and four photon

photographic detectors, as even these present considerable difficulty.
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To arrive at the response curve and quantum efficiency of a two

photon photographic detector with low intensity reciprocity failure,

‘we should proceed as follows:

Beginning with the Laplace transform of the inter-arrival time
distribution of the coincidence counter input (3.2.8), we find the
inverse Laﬁlace transform and integrate this transform from zero to
T. The result, Fb(X,T,r), indicates the probability of one or more
coincidence events which is the probability of a grain becoming deve-
lopable during the time of exposure T, that is, the probability that
at least one silver speck is formed in a grain irradiated by an average
of AT photons, (and one such speck is sufficient for developability).
If there are S photographic grains in the area under consideration,
the expected number of grains which will contain a developable speck
after exposure time T will then be S'FO(L,T,T). A plot of FO(X,T,T)
versus A or T indicates the average fractional number of grains
which become developable ag A or T increases, the other variable
being held constant. (In photographic technology, when studying reci-
procity failure, it is customary to hold FO(X,T,T) (which corresponds
to the developed optical density)constant and plot for various values
of A or T the value of AT needed to produce a fixed FO(X,T,T).

Once we have FO(X,T,T) we can obtain the variance in the number
of developed grains from the binomial distribution, that is, the vari-
ance in the number of developable grains can be expected to be
SFO(X,T,1)-(l-Fo(X,T,r)). Since there are SAT photons expected
during the time of exposure, an ideal detector would estimate A with

variance )\/ST so that the efficiency of the photographic detector is
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If instead of two photons it takes four photons for developability,
we must convolve F with itself to obtain the probability of at least
two output events in the coincidence counter.

The problem of carrying out this procedure arises right at the
start in trying to obtain an explicit closed form for the inverse
laplace transform. To find the inverse transform of the coincidence

counter inter-arrival time

2 -{ \s)7
(4.3.2) CPO(S) = ('X%E) ‘ l-ex g Wy B
l- s e

one should take a contour integral over the left half plane. (From

the fact that the distribution function is zero for t < 0, we know
that all the poles of ®(s) must have negative real part (9). Hence
ve must find the roots of s + x(l-e'(X+B)1).

To find these let

(4.3.3) 6 =rer® = r cos 6 + ir sin 6
so that
(4.3.4) e~T8 _ o"TT CO8 e e-trisin e
and
(%.3,5) e-irv co8 6 cos(rt cos 6) - 1 sin(rt cos 6)
8o that '
(4.3.6) s + M1 (BT L g
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becomes

=Th-Tr cos 0 .4 (rt cos 8):=0

("‘o}l?) Io r cos e +' X-M
and

-\t e-rt cos O

(4.3.8) II. r sin 6 - e sin (rt cos 6) =0 ,

Squaring and adding these, we obtain

(4.3.9) r=+ A[1-e"Me~TT co88y
or
(hn}-lo) cos 6 = - -:'—. I Trl; ln[l : %] .

Substituting this result in I above, we obtain after some reduction

r

(4.3.11) cos[At + 1n( + =] =

>

(1 + -E)
A sketch of the expressions on either side of this equation reveals the
locations of the infinity of roots. Some direct attempts at a solution
by numerical methods indicate that large scale computer programming is
necessary.

Thus a closed form approximation to the distribution function
FO(X,T,r) would be helpful. One possibility is to fit a Gamma dis-

tridbution, i.e., a density function of the form

~Uux k-1
(4.3.12) r(x;u,k) = .&EJ%)__

by fitting the first few moments of this distribution to those obtainable

by differentiating cpo(s). Since the first two moments of I(x;uk) are

5T
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(h°3'15) u, - % » Gs = -k§
u

and these determine the particular Gamma distribution completely, we

could set

: 1 . _k

(4.3.14) [W]s’o 5

and

(k.3.15) (o' - ey =% -
P,'8 s=0 P0'®) gmo ;2

If 1 is large q>°(s) tends to xe/ (X+s)2, that is, the laplace
transform of a Gamma distribution with k =2 and M =u. This is as
it should be, for that corresponds to the wailting time distribution for
the second input event in the case of a Poisson process. For large
enough values of 1, we are justified in approximating FO(X,T,T)
near the origin by a Gamme distribution with k = 2. (Some trial approx-
imations easily show that this parameter is not very sensitive to
variations in k.) Thus to a crude approximation we will need only

u and this parameter is found from

2 1 1
(4.3.16) 2_1,
u 1N )‘(‘l_e-m)
or
=AT
(4.3.17) u=ﬂ§%ﬁi
-e

80 that we shall take
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| 20 (1-¢
) : a1, 2 ‘L"L"gx?'z]'

(4.3.18) F,(%,T,7) -f 2_".(.1:’_)“_1] te e at
2-e

o

as response function in the case that two photons within time <t can
produce developability. We shall take

wAT
| _Ma-e™)

(2) T ooan(1-esMy b 43 2-e"* ‘at
(h.3.19) 8, (x,r,r)-fo f—efﬁ?—z] 3T |

1? twice as large a silver speck is required.

Formula (4.3.18) can be integrated to yield

(4.3.20) F (0T,1) = 1-e7YT _yp VT

i

which indicates that the response function of the two photon photographic
detector with low intensity reciprocity failure is identical in shape

(to this crude approximation) to that of the two photon detector without
reciprocity failure but stretched along the A-axis by the factor X/u.
Again to this approximation the efficiency of this detector is related

to that of the two photon simple photographic detector by the relation
du 2
(k.3.21) ((X:T,T)‘ = f(u) (‘d_X)

vhere £(u) 1s the efficiency of the simple two photon photographic
detector evaluated at the abscissa value at which its response curve
2
)

has the magnitude FO(X,T,'r). The term (-g“-lx1 arises from the fact

aF_ 2 :
that &(u) involves the expression (a-u'—o vhereas we need (a'fg)

in the expression for &(A,T,1).
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H‘fgh intensity reciprocity failure can be handled in much the
same wvay 8s low intenﬁity reciprocity failure. In this case we
postulate & dead time , 7, s0 that only those photons contribute to
making an R-photon photographic detector respond which arrive at least
T units apart. In this ‘case the probability that a grain will become
developable in time T is obtained by calculating the probability of
R or more output events from a Type I counter. Here again we encounter
the apparent difficulty that as a first step we need the inverse laplace

th

transform of the R power of the inter-arrival time transform of

the Type I counter
(4.3.22) [fPo(s)]R - [7»%5 78R

which represents the waiting time distribution for the ,Rth output
event from a Type I counter. Subsequently we need the integral from
O to T which is the pro'bqbility that_ the Rth event will occur
prior to time T and corresponds to the probability that a grain
exhibiting high intensity reciprocity failure will become developable.
However, in the present case, we can make use of a device that
will also be found to be useful in a problem to be discussed in the
following chapter. We replace T by T' =T - (R-1)t, a contracted
time interval. It is easily shown that the output process from a Type
I counter is again a Poisson Process with parameter A 1in contracted
time. Hence high intensity reciprocity failure is equivalent, under
the present model, to shortening of the exposure time for an R photon
simple photographic detector by an amount (R-1)T --the accumulated

desd time arising from the first (R-1) dinput photons which are
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incident on a photographic gra:fn. Hence the efficiency of an R-photon
photographic emulsion with high intensity reciprocity failure and dead
time 1, 4s found from

d
(.3.23) H(),T,7,,R) = H(MI',R)
and using
L
(h.3.24) % (A,T,74,R) = a H(xgx,n)
ve get
aH(»,T,t,,R) 2
A 1 Ll
(u.3.25) Z(X,T,Td’R) = E . H X’T,Td,’R l-H\ xfT)T‘d,R [ d)‘, ]

which becomes
(4.3.26) : E(TyT4,R) = %', (N, T,R)

as can be seen by multiplying the numerator and denominator of

(4.3.25) by T = [T-(‘R-l)td] and using (4.3.23) and (4.3.24).
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" CHAFTRR V
COMBINATIONS OF COUNTERS ACTING AS DETECTORS

So far we have been entirely concerned with detectors which are
employed to estimate the pe.rémeter A of a Poisson type input. Here
we shall give some indication of what can be accomplished in other
situations. First we consider a series arrangement of a dead time and
a simple coincidences counter which is used as a detector for discovering
an event consisting of two pulses with given spacing embedded in a
Polsson process of noise pulses. What is of interest in such a case is
the overall probability of failure, :l;.é., the probability of not sensing
the twin signal pulses and the probability of mistaking two noise
pulses for the twin signal pulse. This can arise in several physical
situations, for example, in a radar range determination problem, and
the discussion will proceed from that point of view. The second situa-
tion in this chapter is devoted to a detectio'n situation in which a
dead time and a coincidence counter are used in parallel. This combina-
tion suggests itself in the situation where the Poisson stream to be
obaer;red consists of events which have a variety of energy levels and
it is desired to estimate the intensity of that portion of the stream
whose energy exceeds a given threshold. This situation is the discrete

counter part of a spectrum analyzer.

1. Dead Time and Coincidence Counters in Series (Radar Range
Determination Problem)

A problem which can be solved, at least approximately, by consider-
ing a series combination of dead time and coincidence counters acting on

a Poisson stream, is the following.
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A space véhicle approaching the moon is roquire&;to fire its retro

rocket at some predetermined distsnce from the moon. To sense this

' distance, pulse radar is used in the following manner. The radar uses

two range gates. As soon as a pulse is received in the first gate the
instrument ceases to respond for a time T3 and then fires the retro

rocket provided a signal pulse 1s received in the second range gate

during the time interval To following Tyt If no pulse is received

in this interval, the first pulse is judged to be spurious and the
radar reverts to searching for the first range indication. This
system can fail to operate if (a) a spurious pulse occurs just prior
to the time at which the first turn indication would occu;‘, thus im-
mobilizing and preventing it from being in the proper state to detect

the first range signal and (b) two spurious pulses occur earlier than

the intended firing time spaced in such a way as to produce a pulse in

both range gates and thus fire the retro rocket too soon. We are
interested in determining the probability of both of these types qf
failures [p(a) and p(b)] as a function of the mean time between
r'loise‘ pulses, I/X, and the total time of operation of the radar
system, T.

The probability p(a) 1s very simply obtained and is just the
probability of a spurious event during the time interval [T-Td, Tl.
Since the spurious events will be assumed to arrive in a Poisson
stream with parameter A, the probability of no events duriné this
time interval 1s 1-e 0. The probability p(b) is mere difficult
to obtain, but an approximate value can be obtained by the following

line of reasoning.
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Me gysten galcribed is equivalent to passing the Poisson stream
first throuéﬁ ¢ Type I counter with dead time t,, then througha
hypothetical time contractor which reduces the total elapsed time by
the amount of dead time Mr a experienced due to the number, M, of
output counts from the Type I counter which have occurred during the

.+elapsed time. This results in a new Poisson stream on the interval -

M = T'“T' a vith persmeter

E
(5.1.1) A =-[—M-?-] .
E({T'}

This stream is fed into a coincidence counter with coincidence time
constant T, and the probability of ohe or more coincidences during
a time span T', given that M output pulses are obtained from the
first counter, can then be obtained by integrating the inverse Laplace
transform of the inter-arrival time distribution. We then multiply
this pfobability by the probability of getting M output pulses from
the Type I counter and sum over M to obtain the probability p(p).
This procedure is far from simple, however, and an approximation
to p(b) can be obtained by using the expected number of counts from

the Type I counter

AT

(5.1.2) E(M(T)) = T%?'i

and computing the probabi.lit.:y of a coincidence for a Foisson process
with parameter X'l over the expected time-contracted interval ‘
B(T') = T-E[M,rj‘rd. It is interesting to note that

| E(My)

(5.1.3) : A e—
E(T')
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becomes

AT
AT 1

(5.1.4) —— -,

that is, the output stream from the Type I counter in the contracted
time interval T' is a stream with the same parameter as the input
process.

Furthermore, this stream is a Foisson stream since the waiting
time distribution from the termination of dead-time (which corresponds,
in contracted time, to the arrival of an input event) to the next input
event is a negative exponential distribution.

Now the expected nmumber of counts E{M'} in a coincidence counter

over a time span T' 1is

AT
AM'(l-e ©
-AT
2-e ¢

(5.1.5) E(M'(T')]} =

which for Atc << 1 becomes

AT [1-(1-Mt_ )]
< ~X21'c'1" .

(5.1.6) E(M(T')]) =
2- (l-XTc)

Let P&,(r) denote the probability of exactly r coincidences

in the time T'. Since the expected number of coincidences is

(5.1.7) BM(T)) = § R, (r)
r=0

and in the present situation E{M(T')) << 1 we may make the further

approximation I&,(r) =0 for r>2 so that
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(5.1.8) M) = () = T B (r)

r=l

The expression on the right is p(b), the probability of one or more
of the kind of coincidences which cause premature firing. For this

approximation, therefore, we have

(5.1.9) p(b) = XarcT' :

2

As an example, let ) = 10°° counts per second and T = 100 seconds,

Ty =T, = 0.5 seconds then

a
2.2

(5.1.10) E(M) = 10_% ~1
5x10"7+1

hence E(T') = T-E{(M}s d‘= T (note that without the coincidence counter

we would expect a noige pulse and hence premature firing.) Since

B(M(T*)} = A.a'rcT = 5x10"5 , the probability of an early firing is

-AT -
only sbout 1/2 percent, and since p(a) = l-e d. 5x10 5 the over-
all probability of malfunction due to the incident Poisson noise is

p(a) + p(b) = .01.

2. Coincidence and Dead Time Counters in Parallel - Energy Detection

It was remarked earlier that radiation can be considered as made
up of discrete photons and that differences in the frequency or wave-
length of the radiation can be associated with differences in the
energy which the pliotons may have. In some applicetions a detector is
required to measure not only the total number of photons in a stream

but also the fraction having a given energy level. The continuous
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analog of this type of a detector would be a spectrum analyzer which
measures the relative power in a narrov band of frequencies.

Here we shall confine ourselves to & Poisson stream in which the
photons can have two energy levels El and Ezf We shall further
assume that the differences between these types of photons manifests
itself in their ability to produce electrons in some counter device;
the lower energy photons (El) being able to dislodge only one elec-
tron while the higher energy photons are capable of dislodging at least
two electrons. The counters, whether dead time or coincidence time,
are conceived of as operating on the electron stream produced by the
photons. We are interested in observing both the intensity of the
stream and the fractional intensity of the high energy radiations.

Assuming that all the electrons produced by a photon are generated
within a time 7t after the occurrence of the photon we can proceed as
follows:

A type I dead time counter with time constant Tt 1is used to observe

the total intensity, A = A, + A of the overall Poisson stream. With

1 "2
this choice of time constant, the multiple events produced by the highly
energetic photons will be reduced to simple counts and the formulas of
Chapter II section 2 can be used to determine the efficiency as far as
the estimation of X 1is concerned.

In addition, a simple coincidence counter is introduced into the
stream, with coincidence time constant t. This counter will count the
high energy photons (ggs count per high energy photon since the electrons
are all produced within a short time T of the occurrence of the photon)

and will also register a count when two low energy photons occur within

17 time units.
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Let nl('I') and - ne(T) denote the number of low and high energy
vhotons occurring during an observation time T. An ideal device would
in this case, produce output counts m* which, for the overall A-detector
would be ma = nl+ n, and for the high energy, or kz-detector, m: = n,.
The non-ideal counts described sbove would yield outputs m, and n

e
related to those by

¥ =
(5.2.1) my Sm¥en +n,
and

* =
(5.2.2) m, >m =n, .

Letting V*(T) denote the ideal variance of the estimate of Xa/xl+ My
and V(T) denote the variance of the estimate obtained from the combina-
tion of dead time and coincidence time cosnters, we can, as in the case

of the photographic detector, define s measure of detector efficiency

by
(5.2.3) &= ve(T)/v(T) .
The variance of the ideal estimate of T can be obtained
1 2
from the distributions of the ideal estimates of xa and xl + XE'
We have
2
AT (AT
: a r 2 2
(5.2.4) P, = %) =e T
and
T+8
PaN “(M+)T (N +A)
(5.2.5) P+, = 58) ae 12 12
1 2 !r+s$!
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or since the two kinds of PFoisson events are assumed to bde independent

r 8
N AT (AT AT (AT
r LIy 2 2 1
A
M
The distribution of the ratio ¢ = - 1is consequently
A +N
12

p(t =) = kgl p(hy= kr) p(r,= ks)

(5.2.7)
s -(A,T) (xzw)kr -(\T) (xlT)‘“’

2 TS T T

From this formula we obtain the variance of the ideal estimate V*(T)

by means of

o o w -(MT) (A 'r)kr -(nT) (M 'r)ks
" 2 2 2 1 1
-3 3 (& 2 Ty © TRe)T
(5.2.8)

- o -)\.2'1' (XzT)rk -()'-IT) (le)kS ¢
'{r§1 2w 2 Tore TEa)T

We have not yet specified how the actual estimate of )‘2/ xl+x2
is t6 be obtained much less what its variance will be.

To obtain an estimate of )‘2 once we have obtained an estimate
of A= xl + xa we can proceed as follows:

We know that the expected number of counts from the coincidence

counter will be
(5.2.9) E[mc} = E(na]‘ + r(x-xa,'r)
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vhere, using (3.1.14),

(5.2.10) £(A-2, T) =

A
Using the cdbserved number of counts o, in place of E[mc]‘, xa'r in

place of E{n2} and 3. in place of A we obtain an expression

AN
A A '(L'Xa)‘f
n (k-xa)T'[l-e ]
(5.2.11) m = AT+ :
¢ 2 oA
-(X-Xe)r
2-e
A
which can be solved for the estimate A, . Hence also we obtain an

2
, A A A
estimate for the relative intensity xe/x , 8ince A\ was obtained

by (2.2.7).

In principle we could then obtain the variance of this estimate and
the efficiency of this energy detector. The character of the expressions
makes i% clear that £his involves extensive numerical work and perhaps
Monte Carlo simulation.

In principle such a combination of counters can be used as the dis-
crete analog of a spectrum analyzer. Where more than two energy levels
are involved the coincidence counter would need to be "tuned" so that
only those photons with an energy in excess of a given threshold will
produce more than one electron. By varying this threshold, E, the
proportion of photons having energy in excess of E could then be
observed.

It should be noted that photographic detectors have, to some extent,
the characteristics described sbove. High energy photons, for example

X-rays, produce one or more developable grains, since they release a

T0
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number of electrons in passing through a photographic emulsion. Low
energy photons contribute to developability but are required in greater
numbers and over & limited time span in order to produce a developable

grain.
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